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Effects of quenched disorder in the two-dimensional Potts model: A Monte Carlo study
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Motivated by recent experiments on phase behavior of systems confined in porous media, we have studied
the effect of randomness on the nature of the phase transition in the two-dimensional Potts model. To model
the effects of the porous matrix we introduce a random distribution of coupfitfds)=ps(J;;—J1)+(1
—p)8(Ji;—Jy) in the g state Potts Hamiltonian. An extensive Monte Carlo study is made on this system for
g=>5. We studied two different cases of disordarJ, /J,— % andp=0.8 and(b) J,/J,=10 andp=0.5. We
observed, in both cases, that the weak first order transition that appears in the pure case, changes to a
second-order transition. A finite size scaling analysis shows that the correlation length expimetdse to
1 and the best fit to the dependence of the specific heat on system size is logarithmic. This suggests that both
cases belong to the universality class of the Ising model. In contrast, the magnetic exponents point to a
different universality clas4.S1063-651X99)02204-7

PACS numbsgs): 64.60.Cn, 05.70.Jk, 64.60.Fr, 75.40.Mg

I. INTRODUCTION probability. The strength of the disorder is given by the ratio

During the past few years a great deal of effort has beer.(1)f the two values =1J,/J, [14-21. The system in this case

iIs, on average, self-dual. The main advantage of such a
devoted to the study of the effect of quenched randomnes§’ =~ . " . i
on phase transitiongl—10,12—28 Bond and field random- hoice is that the critical temperature can be obtained ana

. _ . lytically, leaving one less parameter to fit. In this paper, the
ness can F’T‘_’duce drastic effects In a phase tra_nS|t|on__ _F S/stem with this type of disorder will be called the self-dual
example, critical exponents change in systems with positivegp) model and in the following the main results reported
heat capacity exponent if bond randomness is introduced using this model will be summarized.

[1]. Schwengeet al.[2] found experimentally that the order- Chenet al. made an extensive Monte Carlo study on the
disorder phase transition of the X2)-2H structure on random-bond eight-state Potts model in two-dimensions
Ni(111) yields critical exponents for the pure layers which (2D) [14,15. They found a second-order phase transition
are compatible with those of the four-state Potts universalitynstead of the first-order one found in the pure case. Addi-
class @>0). Nevertheless, they found that these critical ex-tionally, they found that this second-order transition belongs
ponents are modified when the system has 3% of preade the same universality class as the pure Ising model. Wise-
sorbed atomic oxygen, resulting close to those of the Isingnan and Domany arrived at the same result for the random-
universality class. Additionally, it has been argued that théoond Ashkin-Teller and four-state Potts model finding that
introduction of quenched bond randomness has drastic ethe specific heat has a logarithmic type divergence at criti-
fects on all temperature driven first-order phase transitionsality [16].
[3]. There is also some experimental evidence that disorder Recently Chatelain and Berch#&7] reported results for
produced by porous media affects phase transitions of sydarge-scale Monte Carlo simulations on the SD random-bond
tems within them. An extensive study of the isotropic toeight-state Potts model. They found, contradicting Chen and
nematic phase transition afCB liquid crystals in aerogel collaborators, that the exponengsy and /v are quite dif-
shows that the transition temperature is lowered compared t@rent from the Ising values. Their results are closer to the
the pure situation, and that the order of this transitionprediction made by Cardy and Jacob$&8] using transfer
changes from first to secoid—7]. The same effect has been matrix methods. In this last work, it was reported that the
observed in®He-*He mixtures in aerogelg8]. Using renor-  ratio g/v changes to a value different to that of the Ising
malization group calculationg®] and Monte Carlo simula- model, and depends continuously gnThey also obtained
tions [10] Falicov et al. explained the latter experiment in- that the correlation length exponentis consistent, within
troducing bond randomness in a lattice model®bfe*He  error bars, with the pure Ising values.
mixtures. Kim [19] reported the results of Monte Carlo simulations
The g-state Potts moddll1] is a simple model that, de- on theq=3 random-bond Potts model using the SD model
pending ong, exhibits temperature-driven first or second or-with r equal to 10/9, 2, and 4. He concluded that, while the
der phase transitions. For this reason it has been a goagdtios y/v and 8/v remain unchanged, the exponemtsy
candidate to study the influence of quenched disorder oand B change continuously with the strength of disorder. In
phase transitions. The random bdi@—27 and the random the same year, Piccl20] reported results of Monte Carlo
field [28] Potts model have been studied recently usingsimulations on the same system as Kim but with stronger
mainly, double peak distributions of couplings and magnetiaisorder ¢ =10) and he found that while the values @fv

field, respectively. and y/v do not change significantly from the pure case, the
Most recent works have focused on disorder where couvalue of v is clearly different.
plings can get any of two finite values andJ, with equal The strong disorder limit for the SD model was
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TABLE I. The table shows the number of samples used in the simulations. RD denotes the random
dilution model and SD the self-dual model. The first set of simulations for the RD nifid#Irow) were
used to estimate the critical couplidg using histogram techniqué81].

Lattice size 12 16 24 32 48 64 96 128 192 256 512
RD 287 288 166 137 194 43 43
RD (J.) 180 360 180 358 90 179 90 92
SD (Jo) 899 899 979 998 799 400 450 399 204 151 91

studied theoretically by Conigli$21] some time ago. He In Sec. IV, the results are discussed and finally, in the last
analyzed the random dilutegtstate Potts model in any di- section, we draw conclusions.
mension at the percolation threshold. On a square lattice, this
is the SD model in the limit —. He found that the Potts Il. THE RANDOM-BOND POTTS MODEL
thermal exponent equals the percolation correlation length
exponentv, whenT—T.=0.

Random quenched impurities and its effect on the Pott
model is another case discussed in the literature. In an earlier
work, Novotny and Landa[22], using Monte Carlo simula- —BH= E Jij 6Sis_, (1)
tions, studied the effects of impurities on the Baxter-Wu {n :

model. In the absence of disorder the latter model is in th‘\’where,B: 1/kgT. The spins can take the values 1,2. . q
same universality class as the four-state Potts model. Intrognq 5 is the Kroneker delta function. The sum runs over all
ducing disorder in the form of random dilution caused drastiGyearest-neighbor bonds in the system dpds the strength
effects in the critical behavior, changing the critical expo-yf the interaction betwees) ands; . In a pure system);; is
nents upon the addition of only a few impurities. They foundconstant for all bonds. The-state Potts model is a simple
that this random Baxter-Wu model possibly belongs to theyeneralization of the Ising model which has the advantage of
same universality class as the Ising model. . exhibiting first-order phase transitions far>q.(d) and

In 3D Uzelacet al. [23] performed Monte Carlo simula-  second-order transitions fay<gqc(d). In two dimensions
tions to study the three- and four-state Potts model with im d=2), q. is equal to 4 and in three dimensior$=<3), g,

purities. These models have temperature driven first-ordeg equal 0 2.
phase transition for the pure case. In their simulations, latticé The random-bond Potts model used is described by the

sites were eliminated according to a.dilution quel emulatypove Hamiltonian with couplings randomly selected from
ing () the structure of aerogels afig) site percolation. They ihe distribution

found, in both cases, a change in the order of the transition

only if a finite amount of disorder was present. They also P(3ij)=pS(J;;— )+ (1—p) 8(J;; —1J). 2)
observed that the new specific heat exponent is close to the

Ising value. In Refs[22] and[23] the Potts lattice sites do \We studied two different cases: the most commonly used,
not interact with the impurities. That is, the ratibetween  p=0.5 andr=10 (or SD model and the random dilution
couplings tends tee. In both references the fraction of im- (RD) case where —« andp=0.8. The advantage of the SD
purities are far away from the percolation threshold. model is that the critical value afcan be derived by duality

Monte Carlo simulations reported using a model of disor-relations. In particular the critical valug can be obtained
der different to that of the SD model have given rough estisolving the equatiofi29]

mates of the critical exponents and in general disagree with
the SD result§22,23. For this reason it is really important (ele—1)(eJe—1)=q. ©)]
to do intensive Monte Carlo simulation studies considering
other disorder models. In what follows, we describe our re-
sults using a random dilution bond model with a ratio
— put with a fraction of nonzero couplings equal to 0.8. We performed extensive simulationslok L lattices with
We chose an intermediate value to reduce finite size effectseriodic boundary conditions using the Swendsen-Wang
close the pure casepE 1) [26,27] and strong fluctuations multiple spin flip method 30]. Histogram techniques were
close the percolation thresholg € 0.5). Traditionally, ind used to determine several thermodynamic quantities over a
=2, Monte Carlo studies for the random bond Potts modelrange ofJ [31]. For each distribution of couplings>210°
have been performed in the second order reggpa4) orin ~ Monte Carlo steps per spin were performed. This number of
the strong first-order regiongE 8). We focused thej=5 steps is 16 times the correlation time, enough to produce
Potts model exhibiting a weak first-order phase transition. Taeliable thermal averages. The number of disorder realiza-
compare with the previous reported results, an extensiviéons performed for each model and lattice size are displayed
Monte Carlo study for the SD model was also considered. in Table I. Due to fluctuations smaller lattice sizes require
In the next section we discuss the random-bond Potttarger number of configurations.
model used. Then, in Sec. lll we discuss the finite size scal- The configurational average value of a thermodynamic
ing methodology followed by us to estimate the exponentsquantityA is obtained by first calculating the thermal average

The g-state Potts moddl11] is described by the Hamil-
éonian

Ill. METHODS
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(A) for a given disorder configuration, and then averaging
over the bond distribution

ND’

> (A)

[(A)]= (4)

N, '
whereN,, is the number of bond configurations. We denote
the configurational average pyA)].

As in previous works, the order parameter for the Potts
model has been taken as

ok=1, /v~ 1.01

ap—1 ok=2, v~ 1.01

M=——+, (5 o k=4, 1/v ~0.99

10 107
where
L
_1 —d
p=L""maxM; .M, ... M) 6) FIG. 1. The maxima of the logarithmic derivatives of powers of

the order parametdVl versus system size for the random dilution
model (RD). The correlation length exponent obtained from the fit
of the moment&=1 andk=2 do not follow the inequality shown
in Eq. (15). This is, presumably, due to finite size effects.

and M; is the number of spins in state[14,17,19. We
computed the moments of the magnetizatidhy, (M?), and
(M# and used their values at the criticil to obtain the
exponent combination given by

[(MK)(J)]oc LKA, % Je=J(L)+aL ¥ (1+bL™ ), (13
Using these momenta we also calculated the magnetic suéthereJ¢(L) is identified by the position of the maxima of
ceptibility the specific heat, the magnetic susceptibility, the logarithmic

derivatives of the moments of the magnetization or the posi-

xL(D)=ILY(MZ) —(M)D). (8)  tion of the minimum of the Binder cumulaf33]
The magnetic susceptibility maximum and its valueJat (E%
scales as g=1— 3ED (14

D (301 [xe mad =L, ©)

permitting the evaluation of/v. ] ]

To compute the correlation length exponent we estimated The correlation length exponent was obtained from Eq.
the logarithmic derivatives of an integer power of the order(10). For the RD model the maxima of these derivatives as a
parameteM, function of L are estimated using histogram techniques.

Then, configurational averages are taken. Figure 1 depicts
the dependence of these quantities on the system size. The
behavior is asymptotically a power law and the exponent
obtained fitting the curves are close to the Ising valsel.

It is clear that some corrections to scaling should be included

IV. RESULTS AND DISCUSSION

aIn(M")  (M"E)
al (M)

(E), (10

whereE=ZX;,6sisj- The configurational averages of these

derivatives scale with system sizela¥” [32], which allows
us to directly calculate the correlation length exponent

We also calculate the specific heat which involves the

variance of the energy distribution

J 2
cL<J>=(E) (BB —(E)D). (1)
According to finite size scaling theory, the maximum of the
specific heat and its value at scale with system size as

[CL,maX]![CL(JC)]Oc I—DZ/V-

For a first order transition, the specific heat grows 4sso a
measure of the scaling behavior @fwill provide additional
evidence of the order of the transition.

To calculate the critical temperature for the RD model we
used the finite size scaling relation

12

because the value obtained for the correlation length expo-
nent does not follow, exactly, the inequalli§4]
v=2/d, (15
whered is the space dimension. The exponent obtained av-
eraging the results corresponding to each one of the moments
is v=1.00+0.01.

Using the same procedure, the maxima of the specific
heat, the magnetic susceptibility and the minimum of the
Binder cumulant are estimated for the RD model. Addition-
ally, the corresponding, values for these extreme values
are obtained. In Fig. 2 we show the dependencd,oés a
function of L™, taking »=1. A regression using the ex-
pression given in Eq13) is shown in the figure as continu-
ous lines. The value estimated using this regressiod is
=1.564+0.001. This result agrees qualitatively with numeri-
cal results reported previoudlg26]. In this reference, a linear
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FIG. 2. The position of the maxima of the specific h&at
magnetic susceptibilityy, dIn{(M¥/dJ, and the minimum of the
Binder cumulantVg versusL =% for the random dilution model.
The correlation length exponent is assumed to be 1. The continuo
lines are the fit of the data to E@L3). The critical coupling ob-
tained by taking the limit. — o0 is J.=1.564+ 0.001.

(CU]

10°
L

FIG. 4. The specific heat at the critical coupling]. versus
system size for the random dilution and the self-dual models. The
continuous lines represent a logarithmic fit to the data. It is possible
tg fit the data using a power law function but a better fit is obtained

y usingC~In L. Additionally, in this way the hyperscaling rela-
tion given by Eq.(16) is satisfied.

i model. On the other hand, for the SD model, the value ob-
behavior 13.(p) =p/J.(1) was observed close @=1. On  i5ined isy=1.01+ 0.01[see Fig. 3SD)].

In Fig. 4 we show a plot of the specific heatJatversus

the other hand, whemp is decreased the critical coupling
tends to be larger than what the linear formula predicts. F

q [C(J.)] has a logarithmic behavior in both RD and SD

away from the percolation threshaid a mean field resultis 54615 The solid lines in the figure represent linear regres-
e%PECted- In contrast, whentends to this critical value the  gjong for| > 48. It is clear that finite size effects are present
critical coupling increases systematicdl8g] and should ap- i, the gata. Obviously, it is possible to fit the data using a
proach infinity atp. . For the SD model the critical coupling p4\ver-aw function. However, to be consistent with the hy-

J. is calculated exactly from Ed3). The value obtained is perscaling relation

J.=0.2801273049 -.

In Fig. 3 we plot the derivatives of the logarithm of the
momentsk=1,2,4 of the magnetization at;, versus the
system size, for the SD and RD models. The exponent ob-
tained using the maxima of these quantities for the RD
model, are confirmed. The average value of the correlation
length exponent fitting the data shown in Fig(RD) is v
=1.00+0.01, that is, the same value as in the pure Ising

10’

RD SD

[dIn<M">/d]]

Ok=1, 1/v ~0.99 Ok=1, 1/v ~0.99

10

a=2—dv, (16)

RD

'SD

100 10 10° 10°

L L

FIG. 5. The magnetic susceptibilify at J, versus system size

Ok=2, v~ 101 Ok=2, 1y ~0.99 for the random dilution and the self-dual models. Additionally, the

0 Ok=4, 1N ~1.01 Ck=d, 1y ~0.99 susceptibility maximum vd. is shown for the RD model. Power

10 I 1
10" 10° 10'

1(')2 10° law fits to each of the data sets are shown as continuous lines. RD

L L model: the values obtained from the fit apér=1.67+0.05 and
vIv=1.6£0.1 for xmax and x(J.), respectively. These results are
FIG. 3.d|n(Mk)/dJ at the critical couplingl, versus system size clearly different for the corresponding Ising value (1.75). SD
L for the random dilution and the self-dual models . The correlationmodel: the exponent obtained 48 v=1.72+0.01 for y(J.). This
length exponent obtained by fitting is close to 1 for both types ofvalue is closer to 1.75 but the tendency of the curve is that in the
disorder. limit L—c a lower value must be obtained.
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1 T T T TABLE Il. The table summarizes the results obtained in this
work and their comparison with the corresponding Ising values. The

results from the RD model come from the average of exponents
s k=1 . . . . .
a obtained using the maxima of the associated thermodynamic quan-
=1 tities (histogram techniquel81]) and from simulations at the esti-

. mated value of,. The SD exponents come from simulations at the
critical couplingJ. calculated from Eq(3). The a/v=0 results
assume a logarithmic scaling behavior for the specific teet fij.

k=2

[<Mk>(Jc)]

Exponent v alv ylv Blv

RD 1.00:0.01 O (logt) 1.64+-0.08 0.14-0.01
SD 1.0xx0.01 O (logt) 1.72+0.01 0.146:0.001
Ising 1 0 (logL) 1.75 0.125

k=2

RD SD
10° 10 10° 10’
L L tion given in Eq.(17) is satisfied, within error bars, for the
RD and the SD models. In Table Il we show a summary of

the results for the exponents.

1

10

FIG. 6. The moment&=1 andk=2 for the magnetizatioM at

J. versus system size for the random dilution and the self-dual
models. Power-law fits to each of the data sets are shown as con-
tinuous lines. The values obtained from the fit g8év=0.14
+0.01 andB/v=0.146+0.001 for the RD and SD models, respec-
tively. These results are clearly different for the corresponding Ising  From the results above it is clear that introducing bond
value (0.125). randomness, in thg=5 Potts model, changes the nature of
the transition. The weak first-order transition observed in the
ure case changes to a continuous one. The presence of dis-
rder also decreases the transition temperature as seen in
liquid crystal systems. The results obtained for the correla-
Yion length» and specific heatr exponent are close to the
edrorresponding Ising values. To be sure that the specific heat
behavior is logarithmic one must be able to go to larger
system sizes. However, the magnetization and susceptibility
%’xponentsﬁ and vy clearly indicate that the random bond
Potts model belongs to a universality class other than the
Ising model. This conclusion is reached for both types of
disorder used in the present work. The change observed in
the magnetic exponent follows the tendency reported by
5Cardy and Jacobsé8] and agrees qualitatively with Monte
arlo simulations performed for thg=8 SD Potts model
17]. The random dilution model was difficult to simulate
dpecause the critical coupling must also be estimated. How-

simulating the system at thé, estimated previously. The ever, it is clear for our simulations, that the tendency is that
exponent obtained are, respectively,y=1.67+0.05 and 'andom magnetic exponenjsand g are different from the

ylv=1.6+0.1. Figure 5RD) depicts the results of the simu- corresponding exponents of the Ising model. These results
lation and the fit using the data far=48. The results are disagree with the Monte Carlo simulations performed for the
clearly different from the Ising valuesy(v=1.75). For the Potts _modell with Iran?osmhlmpurltleBZﬁ,Zﬂllagd V:ghvt\?e

SD model the simulations were performed at the theoreticafXPerimental resu '.[S of schwenger and cofla ordf }_.s €.
critical valueJ. and the value obtained g/ v=1.72+0.01. assume that the_ d|screpangy is due to the small sizes simu-
The value is close to the Ising one, but working out the datéated in the previous numencal_ works. On the .Oth?r hand, if
and the fit in Fig. 5(SD), the tendency of the exponent is to one waich carefully the experimental resu!ts It will be no-
separate from the corresponding Ising value. As you fit tak:uced that the exponents reported by us fall inside the experi-

L : mental errors. In conclusion, regardless of the type of disor-
:jngclggasgg.count more of the largérbehavior the exponent der considered, the_ five—s_tate random bond Potts model
Figure 6 shows the magnetization and its second momerptelongs to a new universality class.

atJ., versus the system site The results from the fit with
a power law areB/v=0.14+0.01 for the RD model and
Blv=0.146:0.001 for the SD model. Both results are
clearly different from the Ising valug/v=0.125. All the Useful conversations with E. Medina and A. Hasmy are
regressions were made far=48, observing the finite size gratefully acknowledged. We thank V. Alvarado for criti-
effects for the RD moddlsee Fig. 6RD)]. Again, the results cally reading the manuscript. J.V. thanks PDVSA, Intevep,
tend to separate from the Ising value. The hyperscaling reldor permission to publish this paper.

V. CONCLUSIONS

and with the result for the correlation length exponent show
before, a logarithmic behavior should be expected. We the
conclude that the results far and v for the five-state ran-
dom bonds Potts model point to the Ising model universalit
class. Such conclusion is independent of the type of disord
used in the simulations.

The question now is what happens with the magnetic ex
ponents? We now estimate the susceptibility and the magn
tization exponenty and 8 and check the hyperscaling rela-
tion

dv=28—1. (17

The scaling of the magnetic susceptibility is shown in Fig.
for the RD and SD models. For the RD model the exponen
ylv is estimated in two different ways. First, using the
maxima obtained from the histogram technique and secon
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