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Effects of quenched disorder in the two-dimensional Potts model: A Monte Carlo study
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Motivated by recent experiments on phase behavior of systems confined in porous media, we have studied
the effect of randomness on the nature of the phase transition in the two-dimensional Potts model. To model
the effects of the porous matrix we introduce a random distribution of couplingsP(Ji j )5pd(Ji j 2J1)1(1
2p)d(Ji j 2J2) in the q state Potts Hamiltonian. An extensive Monte Carlo study is made on this system for
q55. We studied two different cases of disorder~a! J1 /J2→` andp50.8 and~b! J1 /J2510 andp50.5. We
observed, in both cases, that the weak first order transition that appears in the pure case, changes to a
second-order transition. A finite size scaling analysis shows that the correlation length exponentn is close to
1 and the best fit to the dependence of the specific heat on system size is logarithmic. This suggests that both
cases belong to the universality class of the Ising model. In contrast, the magnetic exponents point to a
different universality class.@S1063-651X~99!02204-7#

PACS number~s!: 64.60.Cn, 05.70.Jk, 64.60.Fr, 75.40.Mg
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I. INTRODUCTION

During the past few years a great deal of effort has b
devoted to the study of the effect of quenched randomn
on phase transitions@1–10,12–28#. Bond and field random-
ness can produce drastic effects in a phase transition.
example, critical exponents change in systems with posi
heat capacity exponenta if bond randomness is introduce
@1#. Schwengeret al. @2# found experimentally that the orde
disorder phase transition of the (232)-2H structure on
Ni~111! yields critical exponents for the pure layers whi
are compatible with those of the four-state Potts universa
class (a.0). Nevertheless, they found that these critical e
ponents are modified when the system has 3% of pre
sorbed atomic oxygen, resulting close to those of the Is
universality class. Additionally, it has been argued that
introduction of quenched bond randomness has drastic
fects on all temperature driven first-order phase transiti
@3#. There is also some experimental evidence that diso
produced by porous media affects phase transitions of
tems within them. An extensive study of the isotropic
nematic phase transition ofnCB liquid crystals in aeroge
shows that the transition temperature is lowered compare
the pure situation, and that the order of this transit
changes from first to second@4–7#. The same effect has bee
observed in3He-4He mixtures in aerogels@8#. Using renor-
malization group calculations@9# and Monte Carlo simula-
tions @10# Falicov et al. explained the latter experiment in
troducing bond randomness in a lattice model of3He-4He
mixtures.

The q-state Potts model@11# is a simple model that, de
pending onq, exhibits temperature-driven first or second o
der phase transitions. For this reason it has been a g
candidate to study the influence of quenched disorder
phase transitions. The random bond@13–27# and the random
field @28# Potts model have been studied recently usi
mainly, double peak distributions of couplings and magne
field, respectively.

Most recent works have focused on disorder where c
plings can get any of two finite valuesJ1 andJ2 with equal
PRE 591063-651X/99/59~6!/6275~6!/$15.00
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probability. The strength of the disorder is given by the ra
of the two valuesr 5J1 /J2 @14–21#. The system in this case
is, on average, self-dual. The main advantage of suc
choice is that the critical temperature can be obtained a
lytically, leaving one less parameter to fit. In this paper, t
system with this type of disorder will be called the self-du
~SD! model and in the following the main results report
using this model will be summarized.

Chenet al. made an extensive Monte Carlo study on t
random-bond eight-state Potts model in two-dimensio
~2D! @14,15#. They found a second-order phase transiti
instead of the first-order one found in the pure case. Ad
tionally, they found that this second-order transition belon
to the same universality class as the pure Ising model. W
man and Domany arrived at the same result for the rand
bond Ashkin-Teller and four-state Potts model finding th
the specific heat has a logarithmic type divergence at c
cality @16#.

Recently Chatelain and Berche@17# reported results for
large-scale Monte Carlo simulations on the SD random-b
eight-state Potts model. They found, contradicting Chen
collaborators, that the exponentsg/n andb/n are quite dif-
ferent from the Ising values. Their results are closer to
prediction made by Cardy and Jacobsen@18# using transfer
matrix methods. In this last work, it was reported that t
ratio b/n changes to a value different to that of the Isin
model, and depends continuously onq. They also obtained
that the correlation length exponentn is consistent, within
error bars, with the pure Ising values.

Kim @19# reported the results of Monte Carlo simulatio
on theq53 random-bond Potts model using the SD mod
with r equal to 10/9, 2, and 4. He concluded that, while t
ratios g/n and b/n remain unchanged, the exponentsn, g
andb change continuously with the strength of disorder.
the same year, Picco@20# reported results of Monte Carlo
simulations on the same system as Kim but with stron
disorder (r 510) and he found that while the values ofb/n
andg/n do not change significantly from the pure case, t
value ofn is clearly different.

The strong disorder limit for the SD model wa
6275 ©1999 The American Physical Society
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TABLE I. The table shows the number of samples used in the simulations. RD denotes the ra
dilution model and SD the self-dual model. The first set of simulations for the RD model~first row! were
used to estimate the critical couplingJc using histogram techniques@31#.

Lattice size 12 16 24 32 48 64 96 128 192 256 51

RD 287 288 166 137 194 43 43
RD (Jc) 180 360 180 358 90 179 90 92
SD (Jc) 899 899 979 998 799 400 450 399 204 151 91
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studied theoretically by Coniglio@21# some time ago. He
analyzed the random dilutedq-state Potts model in any di
mension at the percolation threshold. On a square lattice,
is the SD model in the limitr→`. He found that the Potts
thermal exponentn equals the percolation correlation leng
exponentnp whenT→Tc50.

Random quenched impurities and its effect on the P
model is another case discussed in the literature. In an ea
work, Novotny and Landau@22#, using Monte Carlo simula-
tions, studied the effects of impurities on the Baxter-W
model. In the absence of disorder the latter model is in
same universality class as the four-state Potts model. In
ducing disorder in the form of random dilution caused dras
effects in the critical behavior, changing the critical exp
nents upon the addition of only a few impurities. They fou
that this random Baxter-Wu model possibly belongs to
same universality class as the Ising model.

In 3D Uzelacet al. @23# performed Monte Carlo simula
tions to study the three- and four-state Potts model with
purities. These models have temperature driven first-o
phase transition for the pure case. In their simulations, lat
sites were eliminated according to a dilution model emu
ing ~a! the structure of aerogels and~b! site percolation. They
found, in both cases, a change in the order of the transi
only if a finite amount of disorder was present. They a
observed that the new specific heat exponent is close to
Ising value. In Refs.@22# and @23# the Potts lattice sites do
not interact with the impurities. That is, the ratior between
couplings tends tò . In both references the fraction of im
purities are far away from the percolation threshold.

Monte Carlo simulations reported using a model of dis
der different to that of the SD model have given rough e
mates of the critical exponents and in general disagree
the SD results@22,23#. For this reason it is really importan
to do intensive Monte Carlo simulation studies consider
other disorder models. In what follows, we describe our
sults using a random dilution bond model with a ratior
→` but with a fraction of nonzero couplings equal to 0
We chose an intermediate value to reduce finite size eff
close the pure case (p51) @26,27# and strong fluctuations
close the percolation threshold (p50.5). Traditionally, ind
52, Monte Carlo studies for the random bond Potts mod
have been performed in the second order region (q<4) or in
the strong first-order region (q58). We focused theq55
Potts model exhibiting a weak first-order phase transition.
compare with the previous reported results, an exten
Monte Carlo study for the SD model was also considere

In the next section we discuss the random-bond P
model used. Then, in Sec. III we discuss the finite size s
ing methodology followed by us to estimate the exponen
is
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In Sec. IV, the results are discussed and finally, in the
section, we draw conclusions.

II. THE RANDOM-BOND POTTS MODEL

The q-state Potts model@11# is described by the Hamil-
tonian

2bH5(̂
i j &

Ji j dsisj
, ~1!

whereb51/kBT. The spins can take the values 1,2, . . . ,q
andd is the Kroneker delta function. The sum runs over
nearest-neighbor bonds in the system andJi j is the strength
of the interaction betweensi andsj . In a pure system,Ji j is
constant for all bonds. Theq-state Potts model is a simpl
generalization of the Ising model which has the advantag
exhibiting first-order phase transitions forq.qc(d) and
second-order transitions forq<qc(d). In two dimensions
(d52), qc is equal to 4 and in three dimensions (d53), qc
is equal to 2.

The random-bond Potts model used is described by
above Hamiltonian with couplings randomly selected fro
the distribution

P~Ji j !5pd~Ji j 2J!1~12p!d~Ji j 2rJ !. ~2!

We studied two different cases: the most commonly us
p50.5 andr 510 ~or SD model! and the random dilution
~RD! case wherer→` andp50.8. The advantage of the SD
model is that the critical value ofJ can be derived by duality
relations. In particular the critical valueJc can be obtained
solving the equation@29#

~eJc21!~erJc21!5q. ~3!

III. METHODS

We performed extensive simulations ofL3L lattices with
periodic boundary conditions using the Swendsen-Wa
multiple spin flip method@30#. Histogram techniques wer
used to determine several thermodynamic quantities ov
range ofJ @31#. For each distribution of couplings 23105

Monte Carlo steps per spin were performed. This numbe
steps is 104 times the correlation time, enough to produ
reliable thermal averages. The number of disorder real
tions performed for each model and lattice size are displa
in Table I. Due to fluctuations smaller lattice sizes requ
larger number of configurations.

The configurational average value of a thermodynam
quantityA is obtained by first calculating the thermal avera
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^A& for a given disorder configuration, and then averag
over the bond distribution

@^A&#5

(
i 51

Ns

^A&

Ns
, ~4!

whereNs is the number of bond configurations. We deno
the configurational average by@^A&#.

As in previous works, the order parameter for the Po
model has been taken as

M5
qr21

q21
, ~5!

where

r5L2d max~M1 ,M2 , . . . ,Mq! ~6!

and M j is the number of spins in statej @14,17,19#. We
computed the moments of the magnetization^M &, ^M2&, and
^M4& and used their values at the criticalJc to obtain the
exponent combination given by

@^Mk&~Jc!#}Lkb/n. ~7!

Using these momenta we also calculated the magnetic
ceptibility

xL~J!5JLd~^M2&L2^M &L
2!. ~8!

The magnetic susceptibility maximum and its value atJc
scales as

@xL~Jc!#,@xL,max#}Lg/n, ~9!

permitting the evaluation ofg/n.
To compute the correlation length exponent we estima

the logarithmic derivatives of an integer power of the ord
parameterM,

] ln^Mn&
]J

5
^MnE&

^Mn&
2^E&, ~10!

whereE5(^ i j &dsis j . The configurational averages of the
derivatives scale with system size asL1/n @32#, which allows
us to directly calculate the correlation length exponentn.

We also calculate the specific heat which involves
variance of the energy distribution

CL~J!5S J

L D 2

~^E2&L2^E&L
2!. ~11!

According to finite size scaling theory, the maximum of t
specific heat and its value atJc scale with system size as

@CL,max#,@CL~Jc!#}La/n. ~12!

For a first order transition, the specific heat grows asLd, so a
measure of the scaling behavior ofC will provide additional
evidence of the order of the transition.

To calculate the critical temperature for the RD model
used the finite size scaling relation
g

s

s-

d
r

e

Jc5Jc~L !1aL21/n~11bL2v!, ~13!

whereJc(L) is identified by the position of the maxima o
the specific heat, the magnetic susceptibility, the logarithm
derivatives of the moments of the magnetization or the po
tion of the minimum of the Binder cumulant@33#

VB512
^E4&

3^E2&2
. ~14!

IV. RESULTS AND DISCUSSION

The correlation length exponent was obtained from E
~10!. For the RD model the maxima of these derivatives a
function of L are estimated using histogram techniqu
Then, configurational averages are taken. Figure 1 dep
the dependence of these quantities on the system size.
behavior is asymptotically a power law and the expon
obtained fitting the curves are close to the Ising valuen51.
It is clear that some corrections to scaling should be inclu
because the value obtained for the correlation length ex
nent does not follow, exactly, the inequality@34#

n>2/d, ~15!

whered is the space dimension. The exponent obtained
eraging the results corresponding to each one of the mom
is n51.0060.01.

Using the same procedure, the maxima of the spec
heat, the magnetic susceptibility and the minimum of t
Binder cumulant are estimated for the RD model. Additio
ally, the correspondingJx values for these extreme value
are obtained. In Fig. 2 we show the dependence ofJx as a
function of L21/n, taking n51. A regression using the ex
pression given in Eq.~13! is shown in the figure as continu
ous lines. The value estimated using this regression isJc
51.56460.001. This result agrees qualitatively with nume
cal results reported previously@26#. In this reference, a linea

FIG. 1. The maxima of the logarithmic derivatives of powers
the order parameterM versus system sizeL for the random dilution
model ~RD!. The correlation length exponent obtained from the
of the momentak51 andk52 do not follow the inequality shown
in Eq. ~15!. This is, presumably, due to finite size effects.
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behavior 1/Jc(p)5p/Jc(1) was observed close top51. On
the other hand, whenp is decreased the critical couplin
tends to be larger than what the linear formula predicts.
away from the percolation thresholdpc a mean field result is
expected. In contrast, whenp tends to this critical value the
critical coupling increases systematically@23# and should ap-
proach infinity atpc . For the SD model the critical couplin
Jc is calculated exactly from Eq.~3!. The value obtained is
Jc50.2801273049•••.

In Fig. 3 we plot the derivatives of the logarithm of th
momentsk51,2,4 of the magnetization atJc , versus the
system size, for the SD and RD models. The exponent
tained using the maxima of these quantities for the
model, are confirmed. The average value of the correla
length exponent fitting the data shown in Fig. 3~RD! is n
51.0060.01, that is, the same value as in the pure Is

FIG. 3. d ln^Mk&/dJ at the critical couplingJc versus system size
L for the random dilution and the self-dual models . The correlat
length exponent obtained by fitting is close to 1 for both types
disorder.

FIG. 2. The position of the maxima of the specific heatC,
magnetic susceptibilityx, d ln^Mk&/dJ, and the minimum of the
Binder cumulantVB versusL21/n for the random dilution model.
The correlation length exponent is assumed to be 1. The contin
lines are the fit of the data to Eq.~13!. The critical coupling ob-
tained by taking the limitL→` is Jc51.56460.001.
ar

b-

n

g

model. On the other hand, for the SD model, the value
tained isn51.0160.01 @see Fig. 3~SD!#.

In Fig. 4 we show a plot of the specific heat atJc versus
L. @C(Jc)# has a logarithmic behavior in both RD and S
models. The solid lines in the figure represent linear regr
sions forL>48. It is clear that finite size effects are prese
in the data. Obviously, it is possible to fit the data using
power-law function. However, to be consistent with the h
perscaling relation

a522dn, ~16!

n
f

FIG. 4. The specific heatC at the critical couplingJc versus
system sizeL for the random dilution and the self-dual models. T
continuous lines represent a logarithmic fit to the data. It is poss
to fit the data using a power law function but a better fit is obtain
by usingC; ln L. Additionally, in this way the hyperscaling rela
tion given by Eq.~16! is satisfied.

FIG. 5. The magnetic susceptibilityx at Jc versus system sizeL
for the random dilution and the self-dual models. Additionally, t
susceptibility maximum vsL is shown for the RD model. Powe
law fits to each of the data sets are shown as continuous lines
model: the values obtained from the fit areg/n51.6760.05 and
g/n51.660.1 for xmax and x(Jc), respectively. These results ar
clearly different for the corresponding Ising value (1.75). S
model: the exponent obtained isg/n51.7260.01 for x(Jc). This
value is closer to 1.75 but the tendency of the curve is that in
limit L→` a lower value must be obtained.

us
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and with the result for the correlation length exponent sho
before, a logarithmic behavior should be expected. We t
conclude that the results fora and n for the five-state ran-
dom bonds Potts model point to the Ising model universa
class. Such conclusion is independent of the type of diso
used in the simulations.

The question now is what happens with the magnetic
ponents? We now estimate the susceptibility and the ma
tization exponentsg andb and check the hyperscaling rela
tion

dn52b2g. ~17!

The scaling of the magnetic susceptibility is shown in Fig
for the RD and SD models. For the RD model the expon
g/n is estimated in two different ways. First, using th
maxima obtained from the histogram technique and seco
simulating the system at theJc estimated previously. The
exponent obtained are, respectively,g/n51.6760.05 and
g/n51.660.1. Figure 5~RD! depicts the results of the simu
lation and the fit using the data forL>48. The results are
clearly different from the Ising values (g/n51.75). For the
SD model the simulations were performed at the theoret
critical valueJc and the value obtained isg/n51.7260.01.
The value is close to the Ising one, but working out the d
and the fit in Fig. 5~SD!, the tendency of the exponent is
separate from the corresponding Ising value. As you fit t
ing into account more of the largerL behavior the exponen
decreases.

Figure 6 shows the magnetization and its second mom
at Jc , versus the system sizeL. The results from the fit with
a power law areb/n50.1460.01 for the RD model and
b/n50.14660.001 for the SD model. Both results a
clearly different from the Ising valueb/n50.125. All the
regressions were made forL>48, observing the finite size
effects for the RD model@see Fig. 6~RD!#. Again, the results
tend to separate from the Ising value. The hyperscaling r

FIG. 6. The momentak51 andk52 for the magnetizationM at
Jc versus system sizeL for the random dilution and the self-dua
models. Power-law fits to each of the data sets are shown as
tinuous lines. The values obtained from the fit areb/n50.14
60.01 andb/n50.14660.001 for the RD and SD models, respe
tively. These results are clearly different for the corresponding Is
value (0.125).
n
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tion given in Eq.~17! is satisfied, within error bars, for th
RD and the SD models. In Table II we show a summary
the results for the exponents.

V. CONCLUSIONS

From the results above it is clear that introducing bo
randomness, in theq55 Potts model, changes the nature
the transition. The weak first-order transition observed in
pure case changes to a continuous one. The presence o
order also decreases the transition temperature as see
liquid crystal systems. The results obtained for the corre
tion lengthn and specific heata exponent are close to th
corresponding Ising values. To be sure that the specific h
behavior is logarithmic one must be able to go to larg
system sizes. However, the magnetization and susceptib
exponentsb and g clearly indicate that the random bon
Potts model belongs to a universality class other than
Ising model. This conclusion is reached for both types
disorder used in the present work. The change observe
the magnetic exponent follows the tendency reported
Cardy and Jacobsen@18# and agrees qualitatively with Mont
Carlo simulations performed for theq58 SD Potts model
@17#. The random dilution model was difficult to simulat
because the critical coupling must also be estimated. H
ever, it is clear for our simulations, that the tendency is t
random magnetic exponentsg andb are different from the
corresponding exponents of the Ising model. These res
disagree with the Monte Carlo simulations performed for
Potts model with random impurities@22,23# and with the
experimental results of Schwenger and collaborators@2#. We
assume that the discrepancy is due to the small sizes s
lated in the previous numerical works. On the other hand
one watch carefully the experimental results it will be n
ticed that the exponents reported by us fall inside the exp
mental errors. In conclusion, regardless of the type of dis
der considered, the five-state random bond Potts mo
belongs to a new universality class.
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TABLE II. The table summarizes the results obtained in th
work and their comparison with the corresponding Ising values. T
results from the RD model come from the average of expone
obtained using the maxima of the associated thermodynamic q
tities ~histogram techniques@31#! and from simulations at the esti
mated value ofJc . The SD exponents come from simulations at t
critical coupling Jc calculated from Eq.~3!. The a/n50 results
assume a logarithmic scaling behavior for the specific heat~best fit!.

Exponent n a/n g/n b/n

RD 1.0060.01 0 (logL) 1.6460.08 0.1460.01
SD 1.0160.01 0 (logL) 1.7260.01 0.14660.001
Ising 1 0 (logL) 1.75 0.125
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